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Abstract
While the Hall magnetohydrodynamics (MHD) model has been explored
in depth in connection with the dispersive waves relevant in magnetic
reconnection, a theoretical study of the mathematical features of this system is
lacking. We consider here the boundedness of the solutions of the Hall MHD
equations. With Dirichlet boundary conditions the total energy of the system
is maintained, and dissipated by diffusion, but the behaviour of the higher
moments of the magnetic field is more complicated. It is found that certain
unusual geometries of the initial condition may lead to a blow-up of the L3-
norm of the field. Nevertheless, reasonable assumptions upon the correlation
between the size of the magnetic field and the curvature of field lines imply
that the magnetic field remains uniformly bounded.

PACS numbers: 52.30.Cv, 52.30.Ex, 96.60.Rd

1. Introduction

The Hall magnetohydrodynamics (MHD) system is in a certain sense a compromise between
the two-fluid MHD equations, which should be necessary to describe phenomena where
electrons and ions decouple, and the one-fluid classical MHD system, which is far simpler and
more amenable to analysis. Its main field of application is magnetic reconnection, where the
so-called whistlers, dispersive waves speeding electrons away from the reconnection sheet,
play a prominent role in the modern description. We do not detail the modifications of Ohm’s
law yielding the Hall MHD equations: for this see, e.g., [1, 2]. For some numerical models
of reconnection, see [3–6]; for the evolution of the Alfvén waves under the Hall MHD model,
see [7]. We start with the Hall MHD normalized incompressible system

∂v
∂t

= ν�v − v · ∇v + J × B − ∇p (1)
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∂B
∂t

= η�B − v · ∇B + B · ∇v − h∇ × (J × B) (2)

∇ · v = ∇ · B = 0, (3)

where v represents the (ion) velocity, B the magnetic field, J = ∇ × B the current density,
p the kinetic pressure, ν the viscosity, η the resistivity and h (>0) the Hall constant. A bounded
forcing could be added to the momentum equation (1) without modifying our conclusions.
We will assume that all the magnitudes lie within a smooth bounded domain �, necessarily
three-dimensional: the Hall term in equation (2) does not allow the magnetic field to remain
within a plane, as happens in classical MHD.

Initial and boundary conditions must be added to the system. To study which ones are
physically admissible, we demand that the total energy of the system must not grow in the
absence of external inputs; in fact, it must decay due to the presence of dissipative terms. In
the collisionless case (ν = η = 0) the energy must remain constant.

2. Energy inequalities and boundary conditions

In order to avoid proliferation of boundary integrals, we impose a sticky boundary, i.e.,
v |∂� = 0; for this condition not to overdetermine the system, we need ν > 0. Multiplying (1)
by v, (2) by B and integrating in �, we obtain

1

2

∂

∂t

∫
�

v2 + B2 dV = DB − ν

∫
�

|∇v|2 dV − h

∫
�

∇ × (J × B) · B dV, (4)

where

DB = η

∫
∂�

B · ∂B
∂n

dσ − η

∫
�

|∇B|2 dV. (5)

DB may also be written in a different way: since �B = −∇ × J,

DB = −η

∫
�

(∇ × J) · B dV = −η

∫
∂�

(J × B) · n dσ − η

∫
�

J 2 dV, (6)

although this does not mean that the volume and boundary integrals in (5) and (6) coincide,
respectively, with each other.

Let us consider the Hall term

DH = −h

∫
�

∇ × (J × B) · B dV. (7)

This equals

DH = −h

∫
∂�

((J × B) × B) · n dσ − h

∫
�

(J × B) · J dV, (8)

and the volume integral vanishes.
The condition to avoid inputs of energy from the outside with the second form (6) of DB

and DH would be

(J × B) · n |∂� = 0 (9)

((J × B) × B) · n |∂� = 0. (10)

This may be achieved by setting either B = 0, J = 0 or J‖B in the boundary ∂�. However,
this implies only

1

2

∂

∂t

∫
�

v2 + B2 dV +
∫

�

ν|∇v|2 + ηJ 2 dV = 0, (11)
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and from this it follows that v → 0, but not that B → 0; the norms ‖J‖2 and ‖∇B‖2 are
only equivalent if B · n = 0 at ∂�. B could become a nonzero gradient. In the collisionless
case, where we do not demand the dissipation of the field, the above boundary conditions are
acceptable.

This problem does not arise with the first form of DB : we must have

B · ∂B
∂n

∣∣∣∣
∂�

= 0, (12)

in addition to (10). Obviously, the simplest way to achieve this is to set the homogeneous
condition

B|∂� = 0, (13)

which we assume from now on.

3. Moments of the magnetic field

The energy is not the only measure of the field to be considered. Higher-order moments of the
form

∫
�

Bk dV, k > 2, provide finer estimates of the size of B, culminating in the maximum
norm ‖B‖∞. The function Bk is certainly differentiable, even at the points where B vanishes,
if k � 2. We therefore consider, for p � 1, the evolution of

‖B‖2p

2p =
∫

�

B2p dV. (14)

Since
∂

∂t
B2p = 2pB2p−2B · ∂B

∂t
, (15)

by using the induction equation we obtain
1

2p

∫
�

B2p dV = − 1

2p

∫
�

v · ∇B2p dV + η

∫
�

B2p−2B · �B dV

+
∫

�

B2p−2B · (B · ∇v) dV − h

∫
�

B2p−2B · (∇ × (J × B)) dV. (16)

The first term of the right-hand side integrates to zero. Let us denote the remaining three
terms, respectively, by A1, A2 and A3. By writing A1 in a form appropriate to the use of
Gauss’s theorem, we find

A1 = η

∫
�

B2p−2B · �B dV

= η

∫
�

∑
j

(∇ · (BjB
2p−2∇Bj) − ∇Bj · (B2p−2Bj)) dV

= η

2

∫
∂�

B2p−2 ∂B2

∂n
dσ − η

∫
�

B2p−2|∇B|2 dV − η(p − 1)

2

∫
�

B2p−4|∇B2|2 dV, (17)

and the boundary integral is zero. As for A2, by a similar argument

A2 =
∫

�

B2p−2B · (B · ∇v) dV

=
∫

�

B · ∇(B2p−2v · B) − v · (B · ∇(B2p−2B)) dV

=
∫

∂�

B2p−2(v · B)B · n dσ −
∫

�

B2p−2v · (B · ∇B) + (p − 1)B2p−4(v · B)(B · ∇B2) dV,

(18)
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and again the boundary integral vanishes. This term may be bounded in the following form:
assuming that the velocity v is uniformly bounded,

|A2| � ‖v‖∞

(∫
�

B2p−1|∇B| + (p − 1)B2p−2|∇B2| dV

)
,

so that by the inequality of Cauchy–Schwarz,

|A2| � ‖v‖∞

(∫
�

B2p dV

)1/2 (∫
�

B2p−2|∇B|2 dV

)1/2

+ (p − 1)‖v‖∞

(∫
�

B2p dV

)1/2 (∫
�

B2p−4|∇B2|2 dV

)1/2

,

and by Young’s inequality (or simply by ab � a2/2 + b2/2)

|A2| � 1

4η
‖v‖2

∞

∫
�

B2p dV + η

∫
�

B2p−2|∇B|2 dV +
p − 1

η
‖v‖2

∞

∫
�

B2p dV

+
η(p − 1)

4

∫
�

B2p−4|∇B2|2 dV. (19)

Therefore,

|A1 + A2| �
(

1

4η
+

p − 1

η

)
‖v‖2

∞

∫
�

B2p dV − η(p − 1)

4

∫
�

B2p−4|∇B2|2 dV. (20)

Let us study now A3. By elementary vectorial identities,

A3 = −h

∫
�

B2p−2B · (∇ × (J × B)) dV

= −h

∫
�

(J × B) · ∇ × (B2p−2B) dV

= −h

∫
�

(J × B) · (∇B2p−2 × B + B2p−2J) dV

= −h

∫
�

(J × B) · (∇B2p−2 × B) dV

= −h

∫
�

(
B · ∇B − 1

2
∇B2

)
· ((p − 1)B2p−4∇B2 × B) dV

= −h(p − 1)

∫
�

B2p−4(B · ∇B) · (∇B2 × B) dV

= h(p − 1)

∫
�

B2p−4∇B2 · ((B · ∇B) × B) dV. (21)

Let us write this in terms of the parameters of the geometry of the magnetic field line. At the
points where B = 0, the integrand vanishes; in the remaining points, denote by T the unitary
field vector, by N the normal and by W the binormal one; let s be the arc length parameter and
κ the curvature. Then

B · ∇B = B
d

ds
(BT) = 1

2

dB2

ds
T + B2κN. (22)

Thus,

(B · ∇B) × B = B3κN × T +
1

2

dB2

ds
T × T = −B3κW. (23)

Hence, we may write A3 in the following forms:

A3 = −h(p − 1)

∫
�

B2p−1κW ·∇B2 dV (24)
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A3 = −h(p − 1)

p + 1/2

∫
�

B2p+1∇ · (κW) dV. (25)

Let us insist that at the points where the field vanishes and there is no binormal vector the
integrand is also zero.

4. Possibility of blow-up

Let us assume that the velocity remains bounded uniformly in time. Although this does not
follow from the original equations, it is physically very reasonable. It may be asked why
this is a more plausible assumption than considering directly the magnetic field as bounded.
Apart from general considerations on the motion of material points, the fact is that MHD (and
Hall MHD) use the Faraday approximation to the Maxwell equations (taking the displacement
current as zero), which does not hold for very fast motion of electric charges. Thus, if we
admit Hall MHD as a valid hypothesis, it would be inconsistent not to take a bounded plasma
velocity.

Let us also assume that the geometry of the field lines is such that ∇ · (κW) < α < 0 for
an interval of time whose length we will specify later. Take for instance p = 3/2. Since by
(20)

|A1 + A2| � 3

4

‖v‖2
∞

η

∫
�

B3 dV, (26)

and by (25) and our hypothesis

A3 � hα

4

∫
�

B4 dV, (27)

equation (16) implies

∂

∂t

∫
�

B3 dV � −9‖v‖2
∞

4η

∫
�

B3 dV +
3hα

4

∫
�

B4 dV. (28)

Let us denote by m(�) the volume of �. By Hölder’s inequality,∫
�

B3 dV � m(�)1/4

(∫
�

B4 dV

)3/4

. (29)

Hence,

∂

∂t

∫
�

B3 dV � −9‖v‖2
∞

4η

∫
�

B3 dV +
3hα

4
m(�)−1/3

(∫
�

B3 dV

)4/3

. (30)

Let us denote the integral of B3 by F. Equation (30) is a differential inequality of the form

F ′ � −kF + cF 4/3. (31)

Any solution of this inequality with initial condition F(0) > (k/c)3 tends to ∞ at a finite time
prior to

t∞ =
∫ ∞

F(0)

dx

cx4/3 − kx
. (32)

Therefore, the L3-norm of B tends to infinity at a finite time. Obviously, the catch in this proof
is the assumption ∇ · (κW) < α for t ∈ [0, t∞): we may easily imagine an initial condition
where this condition occurs, but in principle we cannot assume that it will continue to hold for
the necessary time. Note, however, that it depends only on the geometry of the field lines, not
on the size of the magnetic field, whereas the time for blow-up decreases as F(0) increases,
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and F is a function of the size B alone. Thus, we may imagine such a large F(0) that the
blow-up occurs before the evolution of the field has the time to modify enough the divergence
of κW. While this argument is not completely tight, it shows that the possibility of blow-up
cannot be excluded for a certain moment of the magnetic field in the Hall MHD.

5. Uniform boundedness of the field

The condition ∇ · (κW) < α < 0 is, however, highly artificial and none of the usual
configurations of field lines satisfies it. Instead we find that there is an inverse correlation of
the size of the magnetic field with the curvature of the field lines. There are several reasons
for this: the easiest to understand is that dissipation tends to smooth things and cannot allow
rapid changes of direction of a large field. Explicitly, since ‖∇B‖2

2 is integrable in time, it
must be small for large times. Since

|∇B|2 �
∣∣∣∣dB

ds

∣∣∣∣
2

� (B2κ)2, (33)

B2κ must be small in the mean.
There also exists a more important, purely kinetic, reason for the anticorrelation of B and

κ . Large-scale advecting flows tend to align the field in sheets where it is roughly parallel,
and it points in opposite directions in adjacent sheets. This folding property has been studied
in the context of kinematic dynamo theory with prescribed flows (see, e.g., [8, 9]), as well as
with random δ-correlated flows [10]. The field is much smaller at the points where the field
lines are strongly curved to cross from one sheet to another; independently of the diffusion, it
is found that Bκ ∼ 1. It is also intuitive that a large magnetic field imposes a certain rigidity
to the field line and makes it harder to curve. It must be noted that, while these magnetic
geometries have been found in the context of classical MHD, they are stable in the Hall MHD
and therefore likely to occur whenever the flow is chaotic. As a simple model, consider a
field of the form B = (f (z), 0, 0), representing plane sheets where the field direction varies
vertically. Then,

J × B = −(
0, 0, 1

2 (f (z)2)
)
, (34)

so that the Hall term ∇ × (J × B) vanishes.
This prompts us to postulate that there exists a constant M such that for all time,

‖κB‖∞ � M . We will see that with this condition, the magnetic field remains uniformly
bounded for all time. We have, by (24)

|A3| � h(p − 1)

∫
�

B2p−2Bκ|∇B2| dV

� h(p − 1)M

∫
�

B2p−2|∇B2| dV = h(p − 1)M

∫
�

BpBp−2|∇B2| dV

� h(p − 1)M

(∫
�

B2p dV

)1/2 (∫
�

B2p−4|∇B2|2 dV

)1/2

� 2

η
h2(p − 1)M2

∫
�

B2p dV +
η

8
(p − 1)

∫
�

B2p−4|∇B2| dV. (35)

Compensating the second term with the one in the bound on |A1 + A2| (20), we get
1

2p

∂

∂t

∫
�

B2p dV � −η

8
(p − 1)

∫
�

B2p−4|∇B2|2 dV

+
1

η

(
‖v‖2

∞

(
p +

1

2

)
+ 2h2(p − 1)M2

) ∫
�

B2p dV. (36)
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Hence, denoting G2p = ‖B‖2p

2p, we have

∂

∂t
G2p � −η

4
p(p − 1)

∫
�

B2p−4|∇B2|2 dV +
1

η

(‖v‖2
∞p(2p + 1) + 4h2p(p − 1)M2

)
G2p.

(37)

A somewhat involved argument using the Sobolev–Gagliardo inequalities, and which may be
found in a different context in [11], proves that this inequality implies

sup
0�t�T

‖B(t)‖∞ � Cη−3/2 sup
0�t�T

(‖v(t)‖∞ + Mh)3/2

(
‖B(0)‖∞ + sup

0�t�T

‖B(t)‖2

)
, (38)

for some constant C depending only on �. Since we already know that the magnetic energy
remains bounded, the same may be said of the supremum norm of B and therefore of all its
moments, provided, obviously, that the initial condition is bounded.

6. Conclusions

The equations of the Hall magnetohydrodynamics have not yet been studied from the viewpoint
of the mathematical properties of its solutions. Homogeneous Dirichlet boundary conditions
for the velocity and the magnetic field guarantee that the total energy is maintained by the
advective terms and dissipated by ohmic and viscous diffusion. However, the behaviour of
the higher moments of the field is more doubtful. In fact, a rather artificial geometry of
magnetic field lines as initial condition may cause a blow-up of the L3-norm of the magnetic
field. Nevertheless, some physically plausible assumptions yield a magnetic field uniformly
bounded in time. These are that the plasma velocity remains bounded and that the product of
the size of the field times the curvature of the field line is also bounded. The last condition
has been proved to hold in a large number of models.
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